skip to main content


Search for: All records

Creators/Authors contains: "Robert, Yves"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    This paper revisits distributed termination detection algorithms in the context of High-Performance Computing (HPC) applications. We introduce an efficient variant of the Credit Distribution Algorithm (CDA) and compare it to the original algorithm (HCDA) as well as to its two primary competitors: the Four Counters algorithm (4C) and the Efficient Delay-Optimal Distributed algorithm (EDOD). We analyze the behavior of each algorithm for some simplified task-based kernels and show the superiority of CDA in terms of the number of control messages. 
    more » « less
  2. null (Ed.)
    Many domains of scientific simulation (chemistry, condensed matter physics, data science) increasingly eschew dense tensors for block-sparse tensors, sometimes with additional structure (recursive hierarchy, rank sparsity, etc.). Distributed-memory parallel computation with block-sparse tensorial data is paramount to minimize the time-to-solution (e.g., to study dynamical problems or for real-time analysis) and to accommodate problems of realistic size that are too large to fit into the host/device memory of a single node equipped with accelerators. Unfortunately, computation with such irregular data structures is a poor match to the dominant imperative, bulk-synchronous parallel programming model. In this paper, we focus on the critical element of block-sparse tensor algebra, namely binary tensor contraction, and report on an efficient and scalable implementation using the task-focused PaRSEC runtime. High performance of the block-sparse tensor contraction on the Summit supercomputer is demonstrated for synthetic data as well as for real data involved in electronic structure simulations of unprecedented size. 
    more » « less
  3. We consider the problem of orchestrating the execution of workflow applications structured as Directed Acyclic Graphs (DAGs) on parallel computing platforms that are subject to fail-stop failures. The objective is to minimize expected overall execution time, or makespan. A solution to this problem consists of a schedule of the workflow tasks on the available processors and of a decision of which application data to checkpoint to stable storage, so as to mitigate the impact of processor failures. For general DAGs this problem is hopelessly intractable. In fact, given a solution, computing its expected makespan is still a difficult problem. To address this challenge, we consider a restricted class of graphs, Minimal Series-Parallel Graphs (M-SPGS). It turns out that many real-world workflow applications are naturally structured as M-SPGS. For this class of graphs, we propose a recursive list-scheduling algorithm that exploits the M-SPG structure to assign sub-graphs to individual processors, and uses dynamic programming to decide which tasks in these sub-gaphs should be checkpointed. Furthermore, it is possible to efficiently compute the expected makespan for the solution produced by this algorithm, using a first-order approximation of task weights and existing evaluation algorithms for 2-state probabilistic DAGs. We assess the performance of our algorithm for production workflow configurations, comparing it to (i) an approach in which all application data is checkpointed, which corresponds to the standard way in which most production workflows are executed today; and (ii) an approach in which no application data is checkpointed. Our results demonstrate that our algorithm strikes a good compromise between these two approaches, leading to lower checkpointing overhead than the former and to better resilience to failure than the latter. 
    more » « less